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Lipids play an important role in plants due to their abundance and their extensive participation in many metabolic processes. 
Genes involved in lipid metabolism have been extensively studied in Arabidopsis and other plant species. In this study, a total 
of 1003 maize lipid-related genes were cloned and annotated, including 42 genes with experimental validation, 732 genes with 
full-length cDNA and protein sequences in public databases and 229 newly cloned genes. Ninety-seven maize lipid-related 
genes with tissue-preferential expression were discovered by in silico gene expression profiling based on 1984483 maize Ex-
pressed Sequence Tags collected from 182 cDNA libraries. Meanwhile, 70 QTL clusters for maize kernel oil were identified, 
covering 34.5% of the maize genome. Fifty-nine (84%) QTL clusters co-located with at least one lipid-related gene, and the 
total number of these genes amounted to 147. Interestingly, thirteen genes with kernel-preferential expression profiles fell 
within QTL clusters for maize kernel oil content. All the maize lipid-related genes identified here may provide good targets for 
maize kernel oil QTL cloning and thus help us to better understand the molecular mechanism of maize kernel oil accumulation. 
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Lipids, which refer to fatty acids (FA) and their natural ester 
derivatives, are common in plants and participate in a num-
ber of biological processes. In plants, lipids serve as the 
building blocks for structural membrane lipids (such as 
phospholipids, galactolipids, sphingolipids and sulfolipids) 
[1,2], the sinks for energy storage (such as TriAcylGlycerol, 
TAG) [3], the defensive substance (such as wax), the pre-
cursor of signal molecules in the wounding and pathogenic 
response pathways [4,5], and the necessary energy resources 
for seed germination [6]. Lipid metabolism is a dynamic 
equilibrium, for which the acly-CoA pool is central. Its ten 

main biological processes, including FA synthesis [7,8], 
TAG synthesis and storage [9], FA degradation [12–14], FA 
elongation and wax synthesis [10,11], phospholipid synthe-
sis [15], lipid signaling [16–19], sphingolipid synthesis [20], 
galactolipid synthesis [21], sulfolipid synthesis [22] and 
oxylipin synthesis [23,24], take place in the cytosol, the 
plastids and the endoplasmic reticulum. Within the plastid, 
FA synthesis begins with a series of condensation reactions 
and elongation of acetyl-CoA, forming a pool consisting 
mostly of C16:0- and C18:0-Acyl-carrier proteins (ACP). 
Within the cytosol, the acyl-chains are modified through 
complex interactions of desaturation, elongation and phos-
pholipid/acyl-CoA exchange processes. The dynamic equi- 
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librium system among these pathways ultimately controls 
the composition of FAs, the yield of TAGs and the rate of de 
novo FA synthesis. As the center of lipid metabolism, the 
acyl-CoA pool is a sensitive indicator reflecting the flux in 
acyl-chains [27].   

The availability of complete genome sequences for hu-
mans and model plants [28,29] provides a good foundation 
for systematic metabolism research on a genome-wide scale 
[30,31]. Some metabolic databases have been established, 
such as Carbohydrate-Active enZYmes-CAZy [32], a data- 
base of 320 receptor kinase-like proteins [33] and the P450s 
family database (http://Arabidopsis-p450.biotec.uiuc.edu/). 
Beisson et al. [34] performed a genome-wide annotation of 
Arabidopsis lipid metabolism; more than 600 Arabidopsis 
lipid-related genes were annotated, which was not only 
valuable for Arabidopsis lipid research, but also provided a 
good example for research in other species. As one of the 
most important crops in the world, maize is a model species 
for genome research. The maize genome sequencing project 
has been completed (http://www.maizesequence.org/) and 
the information is stored in a public database. As of March 
2009, there were 2018338 maize ESTs in GenBank (http:// 
www.ncbi.nlm.nih.gov/sites/entrez?db=est, search keywords 
are “Zea mays [porgn: _txid4577]”). The number of high 
throughput genome sequences (HTGS) is 16587 (http:// 
www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore, search 
keywords are “Zea mays [ORGN] AND HTG [KYWD] 
AND Washington University School of Medicine [ALL]”). 
Despite this, the research on maize lipid metabolism is still 
at an initial stage, only 42 maize lipid metabolism genes 
have been experimentally validated (http://www.ncbi.nlm. 
nih.gov/sites/entrez?db=gene, search keywords are “Zea 
mays [porgn] AND lipid AND (1988/1/1[PUBDATE]: 2009/ 
3/1[PUBDATE])”), and many more related genes are still 
unknown. Based on comparative genomic analysis, we have 
cloned in silico and annotated as many maize lipid-related  
genes as possible, with the intention of: 1, annotating maize 
lipid-related genes with full length information in the public 
databases; 2, cloning maize lipid-related genes with no full 
length information; 3, establishing in silico gene expression 
profiles of these genes; and 4, identifying genes co-located 
with QTL for maize kernel oil content. The information 
generated here will be valuable for genetic research into the 
mechanism of maize kernel oil production. 

1  Materials and methods 

1.1  Collection of lipid-related genes in plants 

A total of 635 lipid metabolism-related genes from Arabi-
dopsis and 1 from rice were collected in this study. Of these 
genes, 600 came from the Arabidopsis database on lipid 
metabolism [34] and 36 came from published papers. The 
636 genes encode 207 functional enzymes (here, “functional 
enzymes” refer to classes of genes whose protein products 
perform similar functions, irrespective of their subcellular 
locations), including 182 enzymes for substrate conversions, 
13 transport proteins, 5 transcription factors, 5 structural 
proteins and 2 other lipid-associated enzymes. As some 
gene products might take part in two or more metabolic 
pathways, they would be counted twice or more. For exam-
ple, genes in Kennedy pathway participate in synthesis of 
storage lipids as well as synthesis of phospholipid. The de-
tailed information is shown in Table 1. 

1.2  Annotation of lipid-related genes in the maize da-
tabase 

The lipid-related genes collected in plants were used to 
perform a BLAST [35] search of maize homologs in Gen-
Bank (GenBank Release 169, E-Value < 1.0E–1) at the 
amino acid level. The successful protein matches were ana-
lyzed by Interproscan [36] to obtain their functional motifs, 
which were then manually compared with the motifs in their 
Arabidopsis counterparts. If their motifs were identical, the 
maize and Arabidopsis genes would be annotated as ho-
mologous genes [34]. 

1.3  In silico cloning of lipid-related genes in maize 

The lipid-related genes of Arabidopsis were used to search 
the maize GenBank EST database (GenBank Release 169, 
E-Value < 1.0E–10), and the homologous partial sequences 
(or genes) obtained were used as seed sequences to search 
maize genomic sequences databases (including bacterial 
artificial clone (BAC), genomic survey sequences (GSS) 
and mRNA database (maize nr database in GenBank)). The 
aligned search results were analyzed as follows: 

(1) For alignments to match a BAC sequence, if the iden- 
tities or identities + (Gaps/alignment length) × 100% were  

Table 1  Summary of Arabidopsis lipid metabolism enzymes and genesa) 

Pathway FAD FAEWM FAS GS LS M OM PS SpS SuS TAGSS Sum

No. of enzymes 18 10 37 8 33 26 16 32 18 2 7 207 

No. of genes 52 66 92 12 104 140 74 69 30 2 19 660 

a) fatty acid degradation, FAD; fatty acid elongation and wax metabolism, FAEWM; fatty acid synthesis, FAS; galactolipid synthesis, GS; lipid signaling, 
LS; miscellaneous, M; oxylipin metabolism, OM; phospholipid synthesis, PS; sphingolipid synthesis, SpS; sulfoplipid synthesis, SuS; triacylglycerol synthe-
sis and storage, TAGSS. 
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greater than or equal to 98% (insertion or deletion among 
materials), and more than 80% of the query sequence was 
covered, we assumed that the BAC clone incorporated the 
query sequence. A 10 kb stretch of sequence was taken from 
the target region (the length was adjusted according to the 
length of the homolog) and viewed as the candidate gene 
sequences. If there were sequencing gaps, we extended the 
query sequence to the gap and used it as a seed sequence for 
further elongation using GSS sequences, as described be-
low. 

(2) For alignments to match a GSS or EST sequence, we 
first identified sequences for which the identities or identi-
ties + (Gaps/alignment length) × 100% were greater than or 
equal to 98%. These sequences were then classified into 
genomic and EST sequences and clustered using Cap3 [37]. 
This step was repeated until the query sequence (genome or 
cDNA) could not be further elongated. Finally, the genomic 
and cDNA sequences were aligned to get information on the 
gene structure, which was also verified by comparing with 
the corresponding gene structure in Arabidopsis. For maize 
genes without cDNA sequences, we adopted two strategies 
to determine the correct gene structure: Genscan [38] or 
Fgenesh [39] was used to predict gene structure, and the 
protein sequences of homologous genes in rice and sorghum 
were analyzed by tBlastn with the maize DNA sequences. 
The gene structure was then adjusted manually by applying 
the intron boundary rules (GT/GC-AG).  

Finally, the maize genes were translated into proteins and 
searched for functional domains, which were then compared 
with their corresponding homologous proteins in Arabidop-
sis to ensure the accuracy of the genes obtained by the in 
silico cloning. 

1.4  In silico mapping of lipid-related genes 

The nucleotide sequences of a gene were used in a Blastn  

search against the MaizeSequence database (http://www. 
maizesequence.org) to identify the BAC clone containing 
the gene. For each BAC clone, the contig where the gene 
was located and the 2 most nearest public markers were 
obtained and used for in silico mapping. If no corresponding 
BAC clone could be found or if the corresponding BAC 
clone was not mapped, the gene location was recorded as 
unknown. 

1.5  Digital expression profiling of maize lipid-related 
genes 

As of March 2009, there were 2018338 EST sequences 
stored in NCBI, and we downloaded and classified these 
sequences according to the tissue source of the cDNA li-
braries to construct a local platform for expression analysis. 
If the sample size of a cDNA library was less than 500, it 
was eliminated from the subsequent analysis (see Figure 1). 

Stekel et al. [40] attributed the relative quantitative dif-
ference in ESTs from different cDNA libraries to two rea-
sons: sampling errors in sequencing, which they referred to 
as the unintended hypothesis, and expression difference 
among corresponding tissues, which they referred to as the 
alternative hypothesis. They developed a likelihood function 
of the two hypotheses, obtained the maximum likelihood 
and got a parameter, R, to measure the relative expression 
level of a gene in various tissues. The function is expressed 
as: 
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where m is the number of cDNA libraries, xi,j is the number 
of transcripts of gene j in the ith library, Ni is the total num- 
ber of cDNA clones sequenced in the ith library, and fj is the 
frequency of transcripts of gene j in all the libraries. A gene 
with R > 8 in a particular library was regarded as having a 

 
Figure 1  The schematic statistics of maize EST collection. A total of 1984483 ESTs from 182 cDNA libraries have been collected for expression profiles 
analyses. The ESTs have been classified into six tissues (kernel, leaf, root, flower, meristem and callus) and a mixed library based on the tissue type of the 
original cDNA library. The kernel library with 59 public cDNA libraries (206005 ESTs) had the most extensive original sources. The mixed library owned 
the most number of ESTs (799541), originating from 42 cDNA libraries. The callus library has been excluded from the following analysis as it comes from 
only three original libraries and may not be representative for statistical analysis. Leaf, root, flower and meristem library consist of 25 (48616 ESTs), 32  

(223908 ESTs), 27(106667 ESTs) and 10 (584468 ESTs) original cDNA libraries, respectively. 
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preferential expression in the corresponding library. Other-
wise, genes were regarded as showing no preferential ex-
pression in the corresponding library. 

Varuzza et al. [41] developed two significance tests (P 
value and E value) for the comparison of digital expression 
profiles based on the frequency and Bayesian distribution, 
respectively, which minimizes both type I and type II errors.  

This study combined the two methods mentioned above 
and built expression profiles for lipid-related genes in 
maize. 

1.6  Co-location of kernel oil QTL and maize lipid-  
related genes 

In total, eleven studies that mapped QTLs for maize kernel 
oil content are summarized in Table 2. The QTLs and the 
genes from three types of metabolism (FA synthesis, FA 
degradation and storage lipid synthesis) were integrated into 
the maize reference map IBM2 2005 Neighbors using 
QTL-Finder [42]. Co-location analyses were carried out 
based on the principle that if a lipid-related gene was lo-
cated within the QTL confidence interval (40 cM, as the 
resolution of primary QTL mapping is usually 10-15 cM, 
and the genetic distance of the high-density maize IBM2 
2005 Neighbors map is about four times that of the normal 
maize genetic map [43]), the gene would be assumed to be a 
candidate gene for the QTL. 

2  Results 

2.1  Annotation and in silico cloning of maize lipid-  
related genes 

Based on sequence and motif similarity to the 636 lipid-  

related genes identified from other species, we have identi-
fied a total of 1003 lipid-related genes in maize (Figure 2). 
Of these, 42 genes have been experimentally characterized. 
A number of 732 genes having full-length cDNA sequences 
have been annotated as lipid-related proteins (134), hypo-
thetical proteins (77) or unknown proteins (521). The re-
maining 229 genes were newly cloned in this study with 
197 genes being supported by ESTs. Among the ten meta-
bolic pathways, the number of genes (172) from FA elonga-
tion and wax synthesis was the greatest, while the number 
of genes (4) from the sulfolipid synthesis pathway was the 
smallest (Figure 2, Table 3). All the gene information is 
available at http://www.meta2trait.org. 

As shown in Table 3, genes related to maize lipid me-
tabolism were distributed over 10 chromosomes, varying 
from 57 genes on chromosome 10 to 273 genes on chromo-
some 1. Apart from genes from the sulfolipid synthesis 
pathway (SuS) and the sphingolipid synthesis pathway 
(SpS), genes from the other eight pathways were found 
across all ten maize chromosomes (Table 3). 

2.2  Digital expression profiles of maize lipid-related 
genes 

Digital analysis revealed that a total of 80 enzymes encoded 
by 97 genes showed tissue-preferential expression patterns. 
Of the 5 tissues analyzed, root had the greatest number of 
genes expressed (50 genes encoding 31 enzymes), followed 
by kernel (45 genes encoding 30 enzymes), meristem (31 
genes encoding 18 enzymes) and leaf (1 gene encoding 1 
enzyme). No genes showing flower-preferential expression 
pattern were identified (Table 4). Of the 10 metabolic path-
ways, no genes from the sulfolipid synthesis pathway (SuS) 
or the sphingolipid synthesis pathway (SpS) showed tis- 

Table 2  Summary of previously identified QTL for maize kernel oil content 

Parents Pop. size Pop. type No. of markers No. of QTL Methods References 

B73×By804 450 F2:3 150 39 CIM Song et al. [44] 

B73×By804 298 F2:3 183 6 CIM Zhang et al. [45] 

B73×By804 223 RIL 228 49 CIM, MIM Yang et al. [46] 

IHP76×ILP76 100 F2:3 100 17 ANOVA Goldman et al. [47] 

IHO90×ILO70 200 F2:3 90 41 ANOVA Alrefai et al. [48] 

IHO90×ILO70 200 F2:3 90 11 ANOVA Berke et al. [49] 

IHO90×ILO90 500 F1RM10S2 479 63 ANOVA, IM Clark et al. [50] 

IHP70×ILP70 500 F1RM7S2 499 96 IM Dudley et al. [51] 
IHO70×ILO70, 
IHP70×ILP70 500 F2:3 499 193 GLM Dudley et al. [52] 

IHO90×B73 150 BC1S1,TC 110 28 CIM Wassom et al. [53,54]

L-20-01×L-02-03 408 F2:3 75 13 CIM Mangolin et al. [55] 

BC1S1: Backcross with one parental line to which the F1 line was crossed; F2:3: Second generation self inter-cross line; F1RM10S2: The cross was random 
mated (RM) ten generations and selfed twice to develop lines; F1RM7S2: The cross was random mated (RM) seven generations and selfed twice to develop 
lines; RIL: Recombinant inbred line; TC: Test cross; CIM: Composite interval mapping; MIM: Multiple interval mapping; ANOVA: Analysis of variance; 
IM: Interval Mapping; GLM: Generalized linear models. 
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Table 3  Distribution statistics of maize lipid-related genes along chromosomesa) 

Chr. FAD FAEWM FAS GS LS M OM PS SpS SuS TAGSS Sum 

1 15 87 22 6 33 37 19 16 35 1 2 273 
2 11 13 17 3 20 29 14 5 11 0 0 123 
3 15 11 7 2 15 21 24 13 10 0 0 118 
4 6 8 12 2 17 12 10 9 7 0 2 85 
5 8 4 8 4 23 20 12 16 8 0 2 105 
6 7 11 6 1 16 14 10 7 2 0 2 76 
7 12 15 10 3 19 17 5 7 6 0 4 98 
8 10 6 11 2 2 12 19 15 7 2 0 86 
9 4 10 10 2 14 18 9 2 6 1 1 77 

10 5 7 13 1 9 14 3 3 2 0 0 57 
Sum 93 172 116 26 168 194 125 93 94 4 13 1098 

a) For the abbreviation of metabolisms, see Table 1. 

 

Figure 2  An overview of maize lipid-related gene: construction and global final content. Note: For the abbreviation of metabolisms, see Table 1. 

sue-preferential expression. Genes from the other 8 path-
ways were preferentially expressed at least in one tissue 
(Table 4, 5).  

Table 5 gives a detailed list of the enzymes/genes show-
ing tissue-preferential expression patterns. Some features 
can be identified. First different enzymes from the same 
metabolic pathway are highly expressed in different tissues. 

For example, while FA Multifunctional Protein from the 
fatty acid degradation (FAD) pathway is highly expressed in 
kernel, the ketoacyl-CoA thiolase and the enoyl-CoA hy-
dratase are highly expressed in root. Second, even for the 
same enzyme, different genes are preferentially expressed in 
different tissues. In the example of ketoacyl-ACP synthase, 
ZmCG520 is preferentially expressed in kernel, while 
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ZmCG1282 is preferentially expressed in root. Third, some 
genes are expressed highly in more than one tissue; for ex-
ample, the ZmCG738 gene from the fatty acid synthesis 
pathway (FAS) is highly expressed in both kernel and root. 

2.3  Candidate genes underlying maize kernel oil QTL 

A total of 176 maize kernel oil QTLs have been projected 
onto the IBM2 2005 Neighbors map based on the consensus 
flanking markers. These QTLs were unevenly distributed 
across the maize genome (Figure 3). For example, a cluster 
of 14 maize kernel oil QTLs was identified in Bins 
6.03~6.04, and five QTLs were found in Bin 1.09. The 176 
QTLs could be grouped into 70 QTL clusters. These QTL 
clusters were dispersed along the 10 maize chromosomes, 
covering 34% of the genome. Chromosome 1 contained the 
largest number of clusters (12), chromosome 2 had 9 QTL 
clusters, chromosomes 4, 5 and 6 had 8 QTL clusters each, 
chromosomes 7 and 9 had 6 QTL clusters each and chro-
mosomes 3, 8 and 10 had 7, 3 and 1 QTL cluster, respec-
tively. 

Comparison between the genomic locations of the QTL 
clusters and the genes from the FA synthesis (FAS), FA 
degradation (FAD) and TAG synthesis (TAGSS) pathways 
revealed that 147 of 222 genes (66%) were located within 
59 out of 70 QTL clusters (84%). For example, in maize Bin 
7.04 where 4 QTLs for oil, palmitic acid and oleic acid were 
identified, several genes encoding ketoacyl-ACP synthase 
and acyl-ACP thioesterase were also identified. In total, 147 
candidate genes were found within the 70 QTL clusters. 
Interestingly, all 13 genes of the FA synthesis pathway (FAS) 
with kernel-preferential expression profiles were co-located 
with QTL clusters for maize kernel oil content (Table 5, 
Figure 3). 

3  Discussion  

3.1  Gene cloning in silico 

Currently, there are 2 strategies for gene cloning in silico. 
The first uses statistical models, such as dynamic program-

ming or hidden Markov chains, to predict gene structure. 
Many software programs, including GeneID [56], Fgenesh 
[39] and Genscan [38], were developed based on this 
method. The second is based on the alignment of ESTs or 
protein sequences with the genome sequence. Software of 
this kind includes GeneParser [57] and GRAIL [58]. The 
first method depends greatly on the quality of the genome 
sequence and the models, and it identifies the correct exons 
about 80% of the time [59]. However, for species with huge 
genome sizes, poor physical maps or large amounts of re-
peated sequences the accuracy of this method is low, and 
short exons cannot be identified using this method. The 
second method overcomes the short exon problem, but it 
depends on the accuracy of the sequence alignment and may 
not give a correct prediction if there are big transposon in-
sertions.  

Previous studies show that about 80% of the maize ge-
nome is repetitive sequences, so neither of the two methods 
above can be used alone to correctly identify the gene 
structures. Therefore, we developed a combinatorial gene 
cloning system based on mutual verification using compara-
tive genomics, statistical models and sequence similarities. 
For genes with cDNA or EST sequences, the gene structure 
can be clearly drawn out by simple alignment. For genes 
with no cDNA or EST sequences, a putative gene structure 
can be identified by using some statistical models. All the 
genes are compared with the Arabidopsis genes to ensure 
the accuracy of the predicted gene structure. Using this 
method, 1003 maize lipid-related genes were systematically 
annotated or cloned, of which only 42 genes have been ever 
validated, such as DGAT1-2 [60], the Oleosin genes [61] 
and other genes [61], which are the subjects of patent ap-
plications. We also annotated 598 maize lipid-related genes 
and cloned up to 229 new lipid-related genes in this study. 
Although the newly cloned genes need further experimental 
verification, they will surely provide useful information for 
maize lipid research. 

3.2  Maize kernel oil content QTLs and candidate genes 

In this study, we have collected a total of 176 QTLs for  

Table 4  Number of enzymes encoded by genes with tissue-preferential expression profilesa) 

 Pathway FAD FAEWM FAS GS LS M OM PS SpS SuS TAGSS Sum 

 Sum of en-
zymes/genes 

18/ 
93 10/172 37/116 8/26 34/168 25/194 16/125 32/93 18/94 2/4 7/13 207/1098

Kernel 1/2 0/0 9/13 1/1 3/6 8/13 4/5 3/4 1/1 0/0 0/0 30/45 

Root 2/3 0/0 11/15 0/0 2/3 9/22 4/4 2/2 1/1 0/0 0/0 31/50 

Flower 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

Leaf 0/0 0/0 0/0 0/0 0/0 1/1 0/0 0/0 0/0 0/0 0/0 1/1 

Enzymes / 
genes with 

specific 
expression  

profiles 
Meristem 1/1 2/3 2/2 1/2 2/4 5/14 1/1 3/3 1/1 0/0 0/0 18/31 

a) For the abbreviation of metabolisms, see Table 1; x/y: x and y represent the number of enzymes and genes owning tissue-preferential expression pro-
files, respectively. 
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Table 5  List of genes showing tissue-preferential expression profiles in different tissues 

Tissue Pathway Enzyme function Gene R P Pathway Enzyme function Gene R P 

ZmCG1253 15 0.00 ZmCG153 28 0.00
FAD FA Multifunctional Protein 

ZmCG631 26 0.00 ZmCG348 31 0.00

ZmCG738 26 0.00 

CERT 

ZmCG733 42 0.00
ACP 

ZmCG76 33 0.00 ZmCG430 47 0.00

α-Ketoacid Decarboxylase ZmCG1624 12 0.00 ZmCG286 202 0.00

ZmCG1643 51 0.00 ZmCG841 12 0.00
Enoyl-ACP Reductase 

ZmCG378 118 0.00 

Lipid Transfer Protein 

ZmCG881 51 0.00

ZmCG1279 19 0.00 ZmCG638 27 0.00
Ketoacyl-ACP Reductase 

ZmCG768 26 0.00 ZmCG110 1324 0.00

Ketoacyl-ACP Synthase ZmCG520 29 0.00 ZmCG408 1162 0.00

ACP Malonyltransferase ZmCG26 22 0.00 

Oleosin 

ZmCG150 1343 0.00

PPT1-like Thioesterase ZmCG1 19 0.00 CER2 ZmCG242 10 0.00

ZmCG170 27 0.00 

M 

Sphingosine Transfer Protein ZmCG1495 65 0.00

ZmCG66 21 0.00 Allene Oxide Cyclase ZmCG42 37 0.00

FAS 

Pyruvate Dehydrogenase 

ZmCG107 75 0.00 Hydroperoxide Reductase ZmCG1565 47 0.00

GS FAD6 ZmCG356 32 0.00 ZmCG709 30 0.00

FA Amide Hydrolase ZmCG1646 15 0.00 
NAD+ Oxidoreductase 

ZmCG185 52 0.00

ZmCG579 111 0.00 

OM 

Oxo-Phytodienoic Acid  
Reductase (OPR) ZmCG161 18 0.00

ZmCG1521 84 0.00 Acyltransferase ZmCG281 12 0.00Phosphatidylinositol-4-Kinase γ 

ZmCG391 175 0.00 ZmCG648 28 0.00

ZmCG545 38 0.00 
Dihydroxyacetone-Phosphate 
Reductase ZmCG867 27 0.00

LS 

Phospholipase A2-activating  
Protein ZmCG551 90 0.00 

Kernel 

SpS Acyl-Ceramide Synthase ZmCG1604 16 0.00 

PS 

Phosphoethanolamine 
N-Methyltransferase ZmCG563 42 0.00

Leaf M Lipid-associated Protein ZmCG395 19 0.00     

FAD Acyl-CoA Oxidase, ZmCG1181 8 0.00 ZmCG745 16 0.00

FA Omega-Hydroxylase ZmCG900 154 0.00 ZmCG315 93 0.00

ZmCG11 17 0.00 ZmCG176 19 0.00FAEWM 
Ketoacyl-CoA Synthase 

ZmCG1538 15 0.00 ZmCG881 19 0.00

Dihydrolipoamide Transacylase ZmCG253 19 0.00 ZmCG972 66 0.00
FAS Homomeric Acetyl-CoA  

Carboxylase ZmCG431 10 0.00 ZmCG801 17 0.00

ZmCG479b 11 0.00 

Lipid Transfer Protein 

ZmCG779 28 0.00
GS FAD6 

ZmCG479 11 0.00 ZmCG239b 16 0.00

ZmCG1417 12 0.00 
CER2 

ZmCG239 16 0.00Phosphatidylinositol  
Phosphate Kinase ZmCG1415 12 0.00 

M 

Sec14-like Protein, ZmCG189 10 0.00
Phospholipase  
A2-activating Protein ZmCG551 13 0.00 OM Hydroperoxide Reductase ZmCG1564 20 0.00

LS 

 ZmCG295 9 0.00 Diacylglycerol  
Cholinephosphotransferase ZmCG1224 24 0.00

ZmCG801b 17 0.00 Phosphatidylserine  
decarboxylase ZmCG1430 8 0.00

ZmCG972d 66 0.00 

PS 

Acyl acceptor Acyltransferase ZmCG654 8 0.00

ZmCG972c 66 0.00 

AM 

M Lipid Transfer Protein 

ZmCG972b 66 0.00 
SpS Ceramide Sphingobase C4  

Hydroxylase ZmCG243 15 0.00

(To be continued on the next page) 
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(Continued) 

Tissue Pathway Enzyme function gene R P Pathway Enzyme function gene R P 

ZmCG68 36 0.00 ZmCG375 29 0.00
Ketoacyl-CoA thiolase 

ZmCG1293 10 0.00 ZmCG798 32 0.00FAD 

Enoyl-CoA Hydratase ZmCG543 16 0.00 ZmCG263 23 0.00

ZmCG738 27 0.00 ZmCG71 68 0.00

ZmCG564 24 0.00 ZmCG435 12 0.00

ZmCG76 22 0.00 ZmCG972d 59 0.00
Acyl Carrier Protein 

ZmCG534 28 0.00 ZmCG972c 59 0.00

Acyl-ACP Thioesterase FatA ZmCG589 17 0.00 ZmCG972b 59 0.00
Dihydrolipoamide  
Acetyltransferase ZmCG1237 10 0.00 ZmCG972 59 0.00

Dihydrolipoamide  
Dehydrogenase ZmCG1241 22 0.00 ZmCG779 44 0.00

ZmCG378 126 0.00 

Lipid Transfer Protein 

ZmCG841 27 0.00
Enoyl-ACP Reductase 

ZmCG1643 39 0.00 ZmCG150 1411 0.00

Ketoacyl-ACP Reductase ZmCG768 16 0.00 ZmCG408 1163 0.00

Ketoacyl-ACP Synthase ZmCG1282 27 0.00 ZmCG110 1335 0.00

ACP Malonyltransferase ZmCG26 20 0.00 ZmCG1460 239 0.00

PPT1-like Thioesterase ZmCG1 20 0.00 ZmCG1358 239 0.00

ZmCG588 18 0.01 

Oleosin 

ZmCG638 26 0.00

FAS 

Pyruvate Dehydrogenase E1beta 
subunit ZmCG66 17 0.00 

M 

Sphingosine Transfer Protein ZmCG1495 70 0.00

ZmCG579 112 0.00 Hydroperoxide Reductase ZmCG1564 18 0.00
Phosphatidylinositol-4-Kinase γ 

ZmCG391 154 0.00 Allene Oxide Cyclase ZmCG42 43 0.00LS 
Phospholipase  
A2-activating Protein ZmCG551 36 0.00 Hydroperoxide Reductase ZmCG1565 15 0.00

CERT ZmCG348 28 0.00 

OM 

Lipoxygenase ZmCG388 45 0.00

ZmCG247 19 0.01 Dihydroxyacetone-Phosphate 
Reductase ZmCG867 30 0.00

Epoxide Hydrolase 
ZmCG418 10 0.00 

PS Phosphoethanolamine 
N-Methyltransferase ZmCG563 43 0.00

Root 

M 

Lipid Transfer Protein ZmCG286 127 0.00 SpS Sphingobase C4 Hydroxylase ZmCG316 15 0.00

Note: For the abbreviation of metabolisms, see Table 1. R is the R value representing the expression abundance; P is the P value representing the signifi-
cance of gene tissue-preferential expression. 

maize kernel oil content from 11 studies and projected them 
onto the IBM2 2005 Neighbors genetic map. Seventy QTL 
clusters were identified, covering 34% of the maize genome. 
This is consistent with the finding that about 50 QTLs are 
involved in the development of high-oil maize [63]. Mean-
while, we have cloned and annotated 1003 maize lipid-  
related genes. Clarifying the relationship between the QTL 
clusters and these genes may help us to understand the 
mechanisms of maize kernel oil accumulation and help us to 
clone the genes underlying the mapped QTLs. Although ten 
metabolic pathways are involved in lipid metabolism, only 
three of them are directly associated with kernel oil content 
(FAS, FAD and TAGSS). Co-location analysis of the 222 
genes involved in these three pathways and the 70 QTL 
clusters showed that 147 genes (66%) are located within 59 
QTL clusters (84%). These two proportions are far greater 
than the observed portion of genomic regions containing 
QTL clusters (34%), indicating that the distribution of these 

genes within the QTL clusters is not due to chance alone. It 
is noteworthy that all 13 genes from FAS pathway with tis-
sue-preferential expression patterns are located within QTL 
clusters. The genes co-located with QTL clusters may be 
good candidates for the corresponding QTL. For example, 
in bins 6.03-6.04, a total of 14 QTLs were identified in this 
QTL cluster. The ZmCG882 gene encoding Acyl-CoA: 
Diacylglycerol Acyltransferase was also identified in this 
region, and its function underlying this QTL cluster was 
confirmed by positional cloning [56]. A total of 147 genes 
identified here represent ideal candidates for QTL fine 
mapping and cloning in the near future. 

3.3  Utilization of genes identified in this study  

Although ten pathways, hundreds of enzymes and a thou-
sand genes are involved in maize lipid metabolism, oil con-
tent is still a relatively simple trait compared with more  
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Figure 3  Distribution of maize lipid-related genes and kernel oil QTL clusters along maize chromosomes. For the abbreviation of metabolism, see Table 1. 
Chr.: Chromosome. x.xx represents Bin. Black objects on the left of each chromosome are the QTL clusters; the ones on the right of each chromosome are  

genes in maize lipid metabolisms. Different colours represent different metabolic pathways. 

complex traits like yield, and the genes regulating it are 
well-known. Transformation experiments in other species 
confirmed that regulation of a single gene can result in en-
hanced oil content. In Brassica napus and Arabidopsis, ge-
netic engineering of Acyl-ACP thioesterase resulted in a 
maximum increase of 58% in palmitic acid content [64,65]. 
Down-regulation of Stearoyl-ACP Δ-9 desaturase in Bras-
sica napus improved stearic acid content by 40% [66]. 
Zheng et al. [56] have cloned and conducted genetic trans-
formation of a favorable allele of DGAT1-2, which gave a 
42% increase in kernel oil content and an increase of up to 
107% in oleic acid content. Although there have been great 
achievements in the genetic engineering of plant lipid me-
tabolism, almost all of them have focused on a single gene 
(enzyme) or a single metabolite, which certainly could not 
satisfy the human healthy demands completely. Potrykus 
and colleagues have transferred multiple genes into rice to 
create a synthesis pathway for β-carotene, transforming 
normal rice into golden rice with a high amount of pro-  
vitamin A, which alleviates vitamin A deficiency [67]. Zhu 
et al. [68] have applied combinatorial nuclear transforma-
tion of five carotenogenic genes into a white maize variety. 

These transformed genes generate plants with extraordinar-
ily high levels of β-carotene and other carotenoids, which 
are a good example of combinatorial genetic engineering. 
One important step in combinatorial genetic engineering is 
the selection of the key genes in the metabolism. This study 
has annotated and cloned up to 1003 maize lipid-related 
genes, established in silico gene expression profiles of these 
genes and identified candidate genes underlying maize ker-
nel oil content QTLs. Collectively, the genes we discovered 
might play important roles in high-oil maize development 
and are ideal targets for combinatorial genetic engineering. 
Based on the results from this study, we can name several of 
these key genes, such as the three upstream genes involved 
in fatty acid synthesis: the enoyl-ACP reductase gene, the 
malonyl-CoA:ACP malonyltransferase gene and the ketoa-
cyl-ACP synthase gene. All three genes are preferentially 
expressed in maize kernels and located within QTL clusters 
for maize kernel oil content. Thus, over-expression of these 
three genes may lead to elevated oil content. Another exam-
ple includes two genes involved in the TAG synthesis and 
storage pathway, FAD2 [62] and DGAT1-2 [56]. Both have 
been validated as important genes for maize kernel oil con-



 Li Lin, et al.   Sci China Life Sci   June (2010) Vol.53 No.6 699 

tent. In addition, our study found that some Oleosin genes 
encoding essential structural proteins for oil storage showed 
kernel-preferential expression and were also located within 
QTL cluster regions; these genes are also ideal candidates 
for genetic engineering. Combinatorial engineering of FAD2, 
DGAT1-2 and Oleosin genes might also result in enhanced 
oil content. We can also genetically engineer these key 
genes in combination and then screen different transgenic 
lines for transgenic materials with the best oil production.  

Besides genetic engineering, we can use candidate gene 
association mapping to identify favorable alleles of the 
genes in natural populations. This method has been well 
demonstrated in previous studies. For example, Harjes et al. 
[69] verified the function of lcyE in pro-vitamin A synthesis 
using association analysis and identified important genetic 
polymorphisms responsible for phenotypic variation. Using 
a similar strategy, Beló et al. [62] confirmed the function of 
FAD2 in maize kernel oil content. The genes cloned and 
annotated, especially those showing a tissue-preferential 
expression pattern and co-located with QTL clusters, can be 
regarded as ideal candidates for mining of favorable alleles 
in natural populations. The genetic variants identified can be 
further used to develop functional markers used for Maker- 
Assisted Selection. 
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